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The e!ect of parallel misalignment on the lateral and torsional responses of two rotating
shafts (Je!cott rotors) is examined with theoretical and numerical analysis. The general
equations of motion are derived and given in dimensionless form to represent the general
case. The equations of motion revealed that parallel misalignment couples the translation
and angular de#ections through the sti!ness matrix and the force vector. The non-linear
equations are solved numerically using a combination of Newmark and Newton}Raphson
methods to determine the dimensionless frequency and transient responses in terms of
misalignment magnitude. The numerical results show that the system natural frequencies are
excited at transient condition due to the presence of pure parallel misalignment. At steady
state condition, the 1]-rotational speed excitation is present in the translation and angular
directions, which indicates that parallel misalignment can be a source of both torsional and
lateral excitations.
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1. INTRODUCTION

The problem of misalignment encountered in rotating machinery is of great concern to
designers and maintenance engineers. The need for understanding the phenomena is
important to practical engineers for the purpose of trouble shooting. Most rotating
machinery consists of a driver and a driven machine, which are coupled through some type
of coupling. There are many types of industrial couplings some of which are of rigid, gear,
and #exible type. The couplings' function is to transmit torque from the driver to the driven
machine. There are two types of coupling misalignments: parallel and angular.
A combination of parallel and angular misalignment is common in the industry. This causes
high vibrations with di!erent symptoms that sometimes cannot be explained. There are
a lot of discussions in the industry regarding the interpretation of the vibration signal,
caused by misalignment, coming from a machine, but there is not enough academic research
that explains the phenomena in a simple way.

According to Lorenzen et al. [1], for many decades, it has been common to use solid
couplings in turbomachinery; however, these couplings have a decisive in#uence on
rotordynamics. Reference [1] introduced a comparison of critical speeds of a
high-speed/high-power compressor train alternatively equipped with solid couplings,
#exible-disc, or gear-type couplings. In reference [1], the imbalance response using di!erent
types of couplings was calculated for comparison purposes, which led to the conclusion that
solid couplings can cause the rotor to be more stable. Sekhar and Prabhu [2] presented the
e!ects of coupling misalignment on turbomachinery vibrations. It was shown that the
0022-460X/02/030483#16 $35.00/0 ( 2002 Academic Press
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location of the coupling with respect to the bending mode shape has a strong in#uence on
the level of vibration. A theoretical model of a complete motor}#exible coupling rotor was
presented by Xu and Marangoni [3, 4]. They assumed that the #exible coupling behaves
exactly as a universal joint to take the misalignment e!ect into account. An experimental
investigation on the misalignment e!ect on cylindrical and three-lobe journal bearings was
conducted by Prabhu [5]. Reference [5] showed that an increase in angular misalignment
had caused change in the second harmonic of the vibration response. Simon [6] predicted
the behavior of large turbo-machinery when subjected to imbalance and misalignment.
The vibration excited by the coupling was computed numerically using assumed values for
the reaction forces and moments at the coupling. Dewell and Mithchell [7] developed the
expected vibration frequencies for a misaligned metallic disk-#exible coupling. The
predicted dominant frequencies were 2] and 4] running speed components due to
angular misalignment.

Wattner [8] has dealt with the design functions and case histories of gear couplings. He
discussed the various types of misalignments, which may be encountered by the gear type of
coupling. Case histories were presented in reference [8] for di!erent types of coupling
failures. Forces and moments, induced by gear coupling misalignment, were addressed by
Palazzolo et al. [9]. Palazzolo et al. addressed the fact that gear couplings can produce large
static forces that can a!ect the vibration of turbomachinery. Bloch [10] has shown how
a change from conventional gear-type couplings to more recent diaphram coupling design
can lower shaft stresses su$ciently to avoid shaft replacement during power uprates of
centrifugal compressors. The reaction forces generated by the di!erent types of couplings
were derived by Gibbson [11]. The applications of #exible-type couplings for
turbomachinery were discussed by Mancuso [12]. This reference includes reasons for using
#exible couplings, di!erence between gear and #exible element couplings, and selection of
coupling for new applications.

Rosenberg [13] presented the critical speed behavior of rotating shafts driven by
universal coupling. It has been shown in reference [13] that the models can develop mild
instabilities at odd-ordered integer submultiples of the critical speed. Saigo et al. [14]
investigated the instability of a rotor system induced by Coulomb friction in universal joints
theoretically and experimentally. Reducing the friction leads to substantial reduction in the
destabilizing forces. Sheu et al. [15] examined the e!ects of joint angles and joint friction on
the steady state responses of a double universal joint system. It has been discovered that the
misalignment angles have a great e!ect on #uctuation in the output speed. Lateral and
torsional vibration coupling in rotating machinery commonly refer to gear set. Hudson
[16] has shown that a serious radial gear vibration was determined to be due to signi"cant
torsional excitation. His "eld test data veri"ed and quanti"ed that the frequency and
magnitude of the torque was due to non-synchronous distortion. Means of controlling the
torsional vibration of synchronous motor-driven compressors was introduced by
Al-Bedoor et al. [17]. In reference [17], a dual dynamic absorber was used in the model in
an attempt to reduce the torsional excitation. The result of this study showed that this kind
of torsional absorber can contribute to solving practical problems. Mancuso et al. [18] have
made a comparison between general- and special-purpose couplings. Three basic functions
of a #exible-type coupling are transmitted power, misalignment and end movement.

To this end, one can summarize that few studies have covered the detailed approach of
analyzing parallel misalignment and its e!ect on the lateral and torsional responses. Some
of these studies su!er from a modelling point of view to represent misalignment in its
simplest form able to be understood by the practical engineer. Moreover, little attention was
given to torsional excitation due to parallel misalignment. To the knowledge of the authors,
no study has discussed the lateral and torsional coupling due to pure parallel misalignment.
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The present work is devoted toward the analysis of a rigid coupling model, exposed to
parallel misalignment, to aid turbomachinery diagnostic engineers in the understanding of
the dynamic response of a misaligned system. The work starts by developing the equations
of motions of two machines whose axis of rotation is o!set due to pure parallel
misalignment. The equations of motion are set in dimensionless form for numerical analysis
to study the general e!ect of misalignment on the lateral and torsional responses.
A combination of Newmark beta and Newton}Raphson algorithms is used to solve the
resulting dimensionless non-linear equations of motion. Dimensionless frequency response
is also derived and solved numerically to aid the practical engineer to distinguish between
unbalanced, bowed and misaligned responses. This work can be extended to include
angular and combined misalignment by using co-ordinate transformation, which will be
presented in future work.

2. THE DYNAMIC MODEL

2.1. SYSTEM DESCRIPTIONS AND ASSUMPTIONS

Two disks are mounted at the center of two #exible rotors and connected through a rigid
mechanical coupling. The two shafts are in parallel misalignment state of magnitude d as
shown in Figure 1. The two shafts have the mass centers of the two disks displaced distances
e
1

and e
2

from the shafts' centerlines. Assuming that the disks are rotating in their own
planes, no gyroscopic e!ects are included in the model. Both disks 1 and 2 rotate with
variable angular velocity, bQ

1
and bQ

2
.

For simpli"cation purposes, it is assumed that the two shafts axes are misaligned initially
in the x direction. Instantaneous positions of the two disks and the coupling are shown in
Figure 2.

2.2. KINETIC AND POTENTIAL ENERGIES EXPRESSIONS

The generalized co-ordinate for the system is

MqN"[x
1
, y

1
, b

1
, x

2
, y

2
, b

2
]. (1)
Figure 1. Two masses #exible rotors in a parallel misalignment state.



Figure 2.. Instantaneous locations of the two disks and coupling.
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The total kinetic energy is constituted of driver kinetic energy and the driven kinetic energy.
The system kinetic energy can be written as
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The potential energy is
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The parallel misalignment magnitude appears in the potential energy equation only, which
is an indication that it will appear in the system sti!ness matrix.

2.3. THE EQUATIONS OF MOTION

Upon substituting the kinetic and potential energy expressions into the Lagrange
equation, performing partial di!erentiation and manipulation, the system equation of
motion is found as

[m]MqK N#[k]MqN"MFN. (4)
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where the mass matrix is
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The sti!ness matrix is
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The angle u is the coupling angular position, which is a function of all co-ordinates.
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The equations describing the coupling end positions are
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The mass matrix equation (5) shows that the lateral and torsional equations are coupled due
to the imbalance e!ect of disks' eccentricities e

1
and e

2
. Alignment has no e!ect on the

inertial forces. The sti!ness matrix equation (6) shows that misalignment couples the
angular motion to the translation motions. Misalignment in#uence on the lateral motion
appears in the force vector equation (7). Due to the assumption that misalignment is present
initially in the x direction, there is a preload term appearing in the x direction as in equation
(7). The coupling angular position u, equation (8), is a non-linear function of all spatial
co-ordinates and a function of the misalignment magnitude. The coupling motion can be
described by equations (9) and (10), which are functions of the lateral positions of both disks
and a function of the misalignment magnitude.

2.4. EQUATIONS OF MOTION IN NON-DIMENSIONAL FORM

The following parameters are introduced to simplify the equations:
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The equation of motion (4) can be written in dimensionless form by dividing the equations
of motion by k@

e
d, factoring 1/d into the logitudinal space vectors, which will make all

displacement vectors dimensionless, introducing a dimensionless time t*"u
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dividing the torsional equations by d.

By introducing the dimensionless space vector
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the equations of motion reduce to
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To introduce low damping into the system, assume the damping matrix [C]"diag [c].
To introduce the damping factor into the equations of motion, it needs to be divided by dk@

e
.

Therefore, for simplicity, the damping element is assumed to be
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where 1/u
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is factored into the angular velocity vector producing the dimensionless
damping matrix
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The dimensionless sti!ness matrix is
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The dimensionless force vector is
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The coupling angular position in terms of the dimensionless co-ordinates is
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The equations that describe the coupling lateral de#ections are
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2.5. FREQUENCY RESPONSE OF THE MISALIGNED SHAFTS*AMPLITUDE AND PHASE ANGLE

To examine the lateral frequency response of the system, the torsional degrees of freedom
are removed from the system. Assume constant angular velocity u of the whole assembly.
Set the imbalance phase angles to /

u1
and /

u2
, for disks 1 and 2 respectively. The

misalignment initial phase angle is de"ned by /
m
, The dimensionless frequency response

equation is
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Transforming the above equation into the complex domain by setting
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the dimensionless frequency response equation in complex form is
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For constant velocity, assume the solution of the form
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Figure 3. Disk 1 dimensionless response due to parallel misalignment versus frequency ratio.
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Figure 4.. Disk 2 dimensionless response due to parallel misalignment versus frequency ratio.
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This describes the system amplitude of motion of the steady state circular synchronous
precession.

3. NUMERICAL ANALYSIS

3.1. DIMENSIONLESS FREQUENCY RESPONSES

The dynamic response and phase angle for two Je!cott rotors on #exible supports due to
parallel misalignment, and combined parallel misalignment and imbalance can be
calculated using equation (33). Equation (33) is in dimensionless form with respect to the
misalignment magnitude, d.

The frequency responses due to pure parallel misalignment are shown in Figures 3, 4,
and 5 for rotor 1, rotor 2, and the coupling respectively. These curves correspond to the
rotor amplitudes and phase angles for the values of damping ratios varying from 0)05 to
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Figure 5. Coupling dimensionless response due to parallel misalignment versus frequency ratio.
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0)15, with steps of 0)01. The system parameters selected to generate these plots are estimated
from the basis of selected model values in which both lateral natural frequencies are excited.
The chosen parameter values are m

2
/m

1
"2

3
, k

1
/k@

2
"1

2
, k

2
/k@

1
"2, and the initial

misalignment angle is /
m
"0.

For the selected parameters both natural frequencies (1)5 and 2)5) are excited by the
parallel misalignment. It can be seen that as the damping decreases, both amplitudes change
signi"cantly, as expected. The e!ect of residual shaft bow on imbalance response is
presented in detail in reference [19]. A similar approach can be applied to equation (33) to
study the e!ect of parallel misalignment on imbalanced rotors for di!erent angles.

3.2. TRANSIENT ANALYSIS

Transient response is calculated by solving the non-linear dimensionless equations of
motion (16 and 23) using the Newmark beta and Newton}Raphson methods. Although the
equations of motion are dimensionless, it is di$cult to decide what are the realistic values
for these parameters. Therefore, selection of these dimensionless parameters is based on
a realistic model. The selected model parameters are d"254 mm, m

1
"1)2 kg,

J
1
"9)6]10~4 kgm2, e

1
"0, k

1
"2)4]105, k

t1
"291mN/rad, m

2
/m

1
"1, k

2
"k

1
"

k@
1
"k@

2
and J

2
/J

1
"1

5
.

Due to the non-linearity of the equations of motion, which are a function of the
non-linear coupling angle u, equations of motion are integrated numerically using
Newmark beta, where the Newton}Raphson method is used to compute u at each time step
and checked for convergence. The Newmark beta parameters for accuracy and stability are
selected as a"0)5, b"0)25. The dimensionless time step is selected as Dt*"0)03. The
dimensionless initial conditions are Mq*

0
N"M0N, MqR *

0
N"M0N, MqK *

0
N"[m]~1 M¹*

0
N and u"0

at t*"0. The dimensionless input torque, ¹*
i
"2000 is assumed constant whilst the load

torque is assumed to be proportional to the square of angular speed ¹*
L
"abQ *2

2
, where,

a"¹*
i
/[36000(2n/60)/u

n1
]2 .

Figure 6 shows the dimensionless input, load torques, and the dimensionless speed curve.
The maximum dimensionless speed reached is 11)91 in dimensionless time of 150. The



Figure 6. Dimensionless input and load torques (a) and the resultant speed; (b) versus time.
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values of the input and the load torques are selected so the model natural frequencies are
excited during the transient condition.

The dimensionless transient response of the disks 1 and 2 in the x direction is presented in
Figure 7. The responses show that the lateral and torsional dimensionless natural
frequencies (1)95 and 9)57) are excited due to pure parallel misalignment. The second lateral
natural frequency (4)0) is not excited for the selected symmetrical parameters in the lateral
direction, which puts the coupling at a nodal point. Both disks 1 and 2 start at zero position
and move outward in the x direction (direction of misalignment). Both disks start at zero
position due to the basic assumption in the derivation of equations, that when the two units
are coupled there is no initial preload exerted across the coupling. Both shafts are at zero
position while at rest, and they both take di!erent static positions as soon as the input
torque is applied.

Initially, both disks start at zero position and as soon as the input torque is applied both
disks move outward taking a new static position, as shown in Figure 8. The new
dimensionless static position is in the x direction, the direction of assumed misalignment.
The initial orbits show that the rotors take opposite positions from each other.

The steady state orbits and time response for each rotor are shown in Figure 9. Due to the
excitation of lateral natural frequencies for the chosen parameters, the orbits have "ve inner
loops. These loops are due to the excitation of the lateral natural frequency at steady state
condition. For the chosen parameters, the steady state frequency (11)33) is approximately
5)8 times the excited lateral natural (1)95) frequency. The "nal steady state static positions of
the rotors 1 and 2 are 0)25 and !0)25 respectively.

The steady state frequency contents of the waveforms are shown in Figure 10. Fast
Fourier transform (FFT) with 1024 points and a sampling rate of 200 is applied to the time
signal from t*"240 to t*"300. In Figure 10, the horizontal axis is the dimensionless
frequency form, u/u

n1
. The vertical axis is the logarithmic scale of the power spectral

density of the steady-state waveform. The system's lateral and torsional dimensionless
natural frequencies (1)95 and 9)57) are excited. The steady state dimensionless exciting
frequency is 11)33. This frequency component appears in the lateral and torsional
directions, which indicates that pure parallel misalignment can cause lateral}torsional
excitations of the natural frequencies during normal operation of rotating machinery.



Figure 7. Rotor system response using the lateral}torsional model: (a) transient orbit; (b) dimensionless lateral
and torsional response.

Figure 8. Dimensionless initial start orbits for (a) rotor and (b) rotor 2.
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Figure 9. Steady state lateral}torsional model using the lateral torsional mode: (a) steady state orbits; (b) steady
state response.

Figure 10. Dimensionless frequency responses.
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4. CONCLUSION

In this study, a model for coupled lateral and torsional vibrations of two rotors subjected
to pure parallel misalignment has been developed. The system degrees of freedom are the
model's four orthogonal lateral de#ections, the rigid-body rotation, and the model's
torsional deformation. The system equations of motion are obtained using the Lagrange
equations through successive partial di!erentiation of the kinetic and potential energies.
The equations of motion are coupled in the sti!ness matrix and the force vector as a result
of the presence of misalignment. The equations of motion are put in dimensionless form for
the general situation. The equations of motion for the lateral degrees of freedom are
transformed to the complex domain to be solved for dimensionless frequency response. The
frequency response revealed that the natural frequencies are excited due to parallel
misalignment. The dimensionless transient response of the complete model is solved using
Newmark beta and Newton}Raphson methods with small dimensionless time increments
to assure capturing all transient dynamic changes. The lateral and torsional natural
frequencies are excited during transient and steady state conditions. The steady state
spectra reveal that the 1]-running speed exciting-component and natural frequencies are
present in the translational and rotational degrees of freedom. Finally, the proposed
approach of modelling parallel misalignment can be extended to include the e!ect of
angular misalignment by introducing the axial degrees of freedom and applying co-ordinate
transformation to the equations of motion.

It is interesting that the foregoing study did not provide any evidence of the presence of
second-harmonic (2]) response*a characteristic commonly observed in the "eld in
misaligned rotating shaft systems. It should be noted that the two Je!cott rotors employed
in the model were intentionally assumed to have axisymmetric, linear properties to aid in
promoting transparency of the system excitation}response relationships.

Of course, in real machines the bearings and sometimes supports may exhibit non-linear
e!ects and coupling or shaft asymmetries are not uncommon. Additionally, coupling
kinematics may play a role in the system dynamics. It is, therefore, proposed here that these
e!ects, i.e., system non-linearities, rotating element asymmetries and, in some cases,
coupling kinematics are the main sources of superharmonic vibration in misaligned rotor
systems. Work is currently underway to model the in#uence of these parameters on the
vibration response of misaligned shafts.
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APPENDIX A: NOMENCLATURE

c damping coe!"cient
[C] damping matrix
[c*] dimensionless damping matrix
e
1
, e

2
imbalance eccentricity

MFN force vector
MF*N dimensionless force vector
g gravitational constant
i J!1
J
1
, J

2
disk polar moment of inertia

k
1
, k

2
shaft support sti!ness

k@
1
, k@

2
shaft lateral sti!ness

k
t1

, k
t2

shaft torsional sti!ness
[k] sti!ness matrix
[k*] dimensionless sti!ness matrix
m

1
, m

2
masses of the disks

[m] inertia matrix
[m*] dimensionless inertia matrix
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MQN generalized force vector
MqN generalized spatial co-ordinate
Mq5 N generalized velocity co-ordinate
MqK N generalized acceleration co-ordinate
t time
t* dimensionless time
¹ kinetic energy
¹

i
input torque

¹*
i

dimensionless input torque
¹

L
load torque

¹*
L

dimensionless load torque
< potential energy
x
a

coupling displacement
x*
a

dimensionless coupling displacement
x
1
, x

2
displacements

x*
1
, x*

2
dimensionless displacements

xR
1
, xR

2
velocities

xR *
1
, xR *

2
dimensionless velocities

xK
1
, xK

2
accelerations

xK *
1
, xK *

2
dimensionless accelerations

y
1
, y

2
displacements

y*
1
, y*

2
dimensionless displacement

y
a

coupling displacement
y*
a

dimensionless coupling displacement
yR
1
, yR

2
velocities

yR *
1
, yR *

2
dimensionless velocities

yK
1
, yK

2
accelerations

yK *
1
, yK *

2
dimensionless acceleration

z*
1
, z*

2
dimensionless complex displacements

a Newmark beta parameter for accuracy and stability
b Newmark beta parameter for accuracy and stability
b
1
, b

2
angular position

bQ
1
, bQ

2
angular speed

bQ *
1
, bQ *

2
dimensionless angular speed

bG
1
, bG

2
angular acceleration

bG *
1
, bG *

2
dimensionless angular acceleration

u coupling angular position
/
u1

, /
u2

imbalance phase angle
/
m

misalignment phase angle
f damping ratio
e error criteria
d misalignment magnitude
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